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Abstract

®

CrossMark

High-order harmonic generation (HHG) from periodic asymmetric potentials is investigated
by solving the real-space time-dependent Schrodinger equations and semi-conductor Bloch
equations. Our results show that the periodic asymmetric potential will cause asymmetric
excitation and HHG dynamics in the time domain, leading to the signal of even order
harmonics. From the k-space perspective, a k-dependent transition dipole moment phase
reflects the real-space asymmetry and causes the symmetry breaking of excitation and HHG
dynamics. We also illustrate that the dephasing effect competes with the asymmetry of
interband HHG dynamics. Large amplitude of the driving field is beneficial for observing the
symmetry breaking of interband HHG. However, it is found symmetry breaking of intraband
HHG dynamics is less influenced by dephasing. Moreover, a carrier-envelope phase controlled
driving laser field can be utilized as an isolated attosecond pulse gating mechanism for HHG

from the periodic asymmetric potentials.

Keywords: periodic asymmetric potentials, high-order harmonic generation, symmetry
breaking, time-dependent Schrodinger equations, isolated attosecond pulse gating mechanism
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1. Introduction

With the development of intense mid-infrared (MIR) laser
technology [1, 2], solid high-order harmonic generation
(HHG) becomes an active topic in recent years. The solid
HHG shows different characteristics from its counterpart
in gas media: the cut-off energy of crystal HHG has a
linear dependence on the amplitude of the laser field, a
multi-plateau structure [3, 4], and unique dependence on th
ellipticity of the driving field [5—7]. The HHG in different
crystals is governed by different mechanisms. One well-known
mechanism is the inter- and intraband current model [9]. By
using the intense MIR laser as the driving field, the electrons
are excited from the valence band to the conduction band,
then the electrons/holes are accelerated under the laser field,
and finally, the electrons/holes recombine and the interband
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current is generated. The intraband current is generated by
the Bloch oscillations of electrons/holes within the electric
band. The inter- and intraband currents contribute together
to the crystal HHG and repeat in each half optical cycle of
the driving electric field. Recently, HHG in quasicrystals has
also been studied [12]. It is found that fractal bands play
important roles in these systems. The role of vacancy defect
states in solid HHG has also been investigated. It is reported
that different vacancies such as boron and nitrogen vacancies
cause different defect-induced gap states, which leads to quite
different spin-polarized HHG spectra [13].

The application of solid HHG includes the retrieve of the
band structure [14], characterizing of the bond information
[15], crystal spatial symmetry [16, 17], laser temporal symme-
try [18], tomography of the valence potential and electron den-
sity in crystals with angstrom spatial resolution and attosecond
time resolution [19], and so forth.

© 2022 |OP Publishing Ltd  Printed in the UK
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In gas HHG, for asymmetric molecules, electrons are pref-
erentially located in deeper wells, and the excitation process is
different in the consecutive half cycle [20]. Therefore, due to
the broken temporal symmetry, both even and odd harmonics
are found in the spectra. This is the result of the interaction
between the driving laser and the permanent dipole derived
from asymmetric molecules. Similarly, the symmetry break-
ing phenomenon is possible to be observed when there is
a periodic asymmetric structure in crystals. For instance, by
tailing the Lissajous figure formed by the two-color circular
polarized driving pulse to the symmetry of the graphene lattice,
the electronic excitation and higher harmonic generation of
valley polarization can be realized, and even order harmonic
signals emerged due to the inversion symmetry breaking of
adjacent carbon atoms and the asymmetry induced by Valley
polarization [21].

HHG in crystals can be well described by numerically
solving the time-dependent Schriédinger equation (TDSE)
[22, 23] and semi-conductor Bloch equation (SBE) [8-11].
In this work, HHG from the periodic asymmetric poten-
tial is investigated. Even order harmonics are observed in
both the first and second plateau of HHG spectra. Numeri-
cal results show that the excitation and HHG dynamics are
asymmetric in time domain from the periodic asymmetric
potential. Because a large number of solid targets have non-
centrosymmetric structures, the symmetry breaking shown in
the HHG from periodic asymmetric potential should be a
common phenomenon in strong-field physics in solids.

2. Theoreitical details

2.1. Time-dependent Schrédinger equations

The eigenvalue and eigenstates of the one-dimensional peri-
odic potential is obtained by solving the eigenvalue equation
of H 0

Hobu(x) = E,da(x), (1)

where, n is the sequence number of eigenstates and ®,(x)
is the corresponding eigen-wavefunction. The above formula
is solved numerically by diagonalizing the Hamiltonian H in
coordinate space. Hy is represented by an N x N matrix and N
is the number of spatial grids. The Hamiltonian Hy is given by,

2
Ho=T+ V() = —Zh—mA + V(x), 2)

where T is the kinetic energy operator and V(x) is the potential
energy operator. Atomic units are used in this work. The Math-
ieu type potentials are used to describe the periodic poten-
tial V(x) and the periodic symmetric potential Vi (x) is given
by [25],

Vi(x) = —Vo[1 + cos(2mx/ay) ]| A3)

where Vi) = 0.5603 a.u., and a¢ = 8 a.u. is the lattice constant.
The periodic asymmetric potential V,(x) is given by [25],

Va(x) = =Vo[2.5 — « cos(dmx/ag) — B cosRmx/ag — ¢,)]
4)

3
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Figure 1. (a) and (b) The blue solid line shows the potential of the
one-dimensional periodic symmetric (a) and asymmetric

(b) potentials. (¢c)—(f) The energy band structures of periodic
symmetric (c) and (d) and asymmetric (e) and (f) potentials.

where o = 1.5 and 3 = 1.0 are the parameters controlling the
depth of the two wells inside the lattice. ¢, = /2 is the spatial
phase term between the two frequency components.

The periodic symmetric potential V(x) and asymmetric
potential V,(x) are shown in figures 1(a) and (b), respectively.
In figure 1(b), each lattice has a double-well structure. In order
to obtain the energy band structure, we solve the equation (1)
and the eigenvalue of states is given by,

E = (|Hol), (5)

where E is the eigenvalue of the states and Hy, is the field-free
Hamiltonian of periodic potentials, respectively. The eigen-
value of both symmetric and asymmetric potential is calculated
in coordinate space in the region of 960 a.u. (120 lattices). As
shown in figures 1(c) and (e), the states numbered 1-120 and
121-240 represent the valence band 2 (VB2) and valence band
1 (VB1), respectively. While the states numbered 241-360
correspond to the conduction band 1 (CB1).

Figures 1(d) and (f) show the energy band structure in
the first Brillouin region (|k| < m/ag) of the symmetric and
asymmetric potential solved by the Bloch-state basis expan-
sion method [22, 23]. The energy band structure obtained by
two different methods are consistent. The minimum energy
band gap between valence band maximum and conduc-
tion band minimum is 7.5586 eV and 7.5595 eV for V(x)
and V,(x), respectively, to ensure they have close band gap
values.

After the eigenstate wavefunction of the valence band and
conduction band is obtained by the Bloch-state basis expansion
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method, the interband transition dipole moment (TDM) can be
determined according to the matrix element of the momentum
operator [9],

d(K) = (1, (K) [p|uc (k) 6)

According to the above equation, the TDM can be
expressed by d(k) =i f d3u$,k(x) V ug(x) with u,, being
the periodic part of the solution of the Bloch equation. The
obtained d(k) include both the magnitude and phase of TDM,
then be used in the semiconductor Bloch equation calculation.

We describe the interaction between a linearly polarized
laser and a one-dimensional periodic atomic chain in length
gauge, and the time-dependent Hamiltonian is written as,

H = Hy + xE(1). (7

The time-dependent Schrodinger equation is solved by the
split-operator method [26]. All the eigenstates numbered from
121 to 240 filled in valence band 1(VB1) are included as
the initial states in the time-dependent calculation. Instead
of coupling all states together as a superposition state, each
initial state is evolved by TDSE independently. To over-
come the nonphysical reflection of the wave function (r)
at the edge, an absorption boundary is employed. The solid
HHG current is obtained with the time-dependent wave
function (z),

JO = —(@)|pli(1)). ®)

The HHG spectra are obtained by calculating the Fourier
transform of the laser-induced currents. To analyze the exci-
tation, the time-dependent population (TDP) is obtained as
follows [24],

G = (alo(0)’ ©)

where ¢, is the field-free state with eigenenergy of E,. | C,()|*
can be understood as the time-dependent population on the
eigenenergy E,,.

2.2. Semiconductor Bloch equations

The electron dynamics within a solid crystal are described
by the semiconductor Bloch equations (SBEs) in the recipro-
cal momentum space, which is written in a two-band model
as [9, 10]:

1 .
(K, 1) = —EW(K, N — UK, HN(K, e SED (10)

(K, 1) = ispQV (K, (K, e SED 4 cc., (11)

where 7(K,f) relates the polarization strength between the
CBM and the VBM, later the polarization p(K, f) is determined
by (K, f) as,

p(K, 1) = dK +A@)r(K,He’® +c.c., (12)

where T, and N(K, t) are the polarization dephasing time and
the population difference between the conduction (rn,—.) and
the valence (n,—,) bands, respectively. In our calculations,
the dephasing time describing the coherence between these
two band states is used as a free parameter and was fixed at
T, = 0.5 o.c. s,—. = 1 and s,—, = —1 are constants used to

describe (from unity) the band populations variation from
the initial state of the system where all electrons are in
the valence band. Q(K,r) = F()d(K + A(r)) is the Rabi
frequency for a given laser field E(¢) (with corresponding
vector potential A(f) = — fimﬁ(t’ )d? and transition dipole
d(K). Since both the laser field .%(r) and transition dipole
d(K + A(r)) are vectors, the QK,1)= F.()d. (K +
A@) +F,(Ddy(K + A(D) +F.(1)d (K + A(D)). In  our
case, the laser polarization is along the z-axis, therefore,
UK, 1) = F,()d(K + A(1)).

S(K, 1) = fl;Eg(K 4+ A(¢))d? is the classical action for an
electron with crystal momenta K transformed into a moving
frame K = K + A(?), and E, being the bandgap energy, #, is
beginning time of the laser pulse.

2.3. Quasi-classical model

In the quasi-classical model, since the tunneling excitation rate
has an exponential dependence on the bandgap, the electrons
are supposed to be excited mainly around I point which is the
eigenstate on top of VB1 in k-space. The motion of electrons
in the k-space can be written as follows,

k() = ko + %A(t), (13)

where kq is the initial wave vector at I" point and A(?) is the
vector potential of the driving laser field. When the birth of
electrons/holes through tunnel excitation, the electrons/holes
does Bloch osillations driven by the laser field. When the
electron and holes recounter each other, harmonic photons are
emitted with the order given by,

_ k(D) — ev(k(®)

th

n(r) (14)

where . (k(?)) and e, (k(?)) are the energy of electron and holes,
respectively. While wy is the frequency of driving laser field.

3. Results and discussion

3.1. Real space perspective of HHG in periodic asymmetric
potential

The shape of the 24-cycle trapezoidal laser pulse is plotted in
figure 2(a) which has a total duration of 24 o.c. and a 3 o.c.
ramp-up in our calculation. A Ey =0.011 a.u., 1600 nm driving
laser field corresponds to a maximum of vector potential equal
to 0.3863 a.u., which is about 98% of the Brillouin zone
(kmax = 0.3927 a.u.). We can see that in the range from
T = —9T, to 9T, the amplitude of the electric field is identical
in each optical cycle. Figure 2(b) shows the solid HHG current
driven by the 24-cycle trapezoidal laser pulse.

Figure 2(d) shows the HHG spectra in periodic symmetric
(black solid lines) and asymmetric potentials. For periodic
asymmetric potentials, the HHG spectra from the driving field
with opposite polarization are calculated. Both odd and even
order harmonics are observed in the HHG spectra driven
by a 24 o.c., trapezoidal, 1600 nm laser field from periodic
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Figure 2. (a) Temporal profile of 24-cycle trapezoidal driving laser
pulse. (b) The HHG current obtained by solving the real-space
TDSE from the periodic asymmetric potentials. (c) and (f) Band
structure of the periodic asymmetric potentials (c) and symmetric
potentials (f) guiding the structure of double-plateau characteristics
shown in (d). (d) The HHG spectra of the symmetric (black solid
line) and periodic asymmetric potentials with parallel (red solid
line) and anti-parallel (blue solid line) polarization direction of the
driving field. Simulated laser parameters: a field strength

Ey = 0.011 a.u., 24-cycle trapezoidal, 1600 nm laser field.

asymmetric potential. The HHG spectra show a double-plateau
structure, the first plateau starts at 7.8wy (minimum bandgap)
and ends at 13.5wy. The second plateau starts at 13.5wy and
ends at stage around 28.5wy. For the HHG spectrum in periodic
asymmetric potentials, the even-order harmonics are observed
from both the first and second plateaus compared with the
spectra from the symmetric potential.

An even harmonic at 8th is also observed from HHG spectra
in the periodic symmetric potential in figure 2(d). The emer-
gence of even harmonics indicates the dynamic symmetry of
the system is broken. This even harmonic signal is considered
caused by the indirect transition when the conduction band
with higher energy such as CB2 is included in the case of a
multi-band system [3, 27].

According to the three-step model of solid HHG [9, 10, 28]:
(1) electrons and holes are generated by an intense driv-
ing laser field; (2) then electrons/holes oscillate within the
energy band driven by the electric field; (3) the elec-
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Figure 3. Schematic real-space representation of regimes of HHG
in symmetric (a) and (b) and asymmetric (c) and (d) periodic
potentials exposed to an oscillating driving electric field.

The laser parameters are same as those in figure 2.

trons and holes recombine with each other and high-order
harmonic photons are produced. Thus it is possible to con-
trol the HHG dynamics by controlling the excitation step.
Similar to the HHG in asymmetric molecules [20], the exci-
tation symmetry will be broken in the periodic asymmetric
potential driven by a monochromatic electric field. For the
periodic symmetric potential, the polarization direction of
the following half cycle of the laser field is opposite, and
the laser dressed potential energy thus is inversely symmet-
ric, as shown in figures 3(c) and (d). Therefore, the excita-
tion probability is equal in the adjacent half-optical period.
As a result, the HHG processes repeat in each half optical
period.

For periodic asymmetric potentials, electrons tend to locate
in the deeper potential within the lattice. As shown in
figures 3(a) and (b), in the first half optical cycle, the electric
field is parallel to the inherent permanent dipole moment of
the asymmetric potential, and the energy of the electron is
reduced by the downshifting action of the driving laser and the
ionization probability of the electron is low [20]. In contrast,
in the consecutive half optical period, the laser field is reversed
and the excitation rate increases. Therefore, the yield of HHG
in the half optical period where the electric field is parallel
to the PDM is higher than in the antiparallel case. Therefore,
the temporal periodicity of HHG electron dynamics changes
from 7 rad to 27 rad, and even order harmonic signals will be
generated.

Figures 4(a) and (b) show the TDP in periodic symmetric
potential and asymmetric potential, respectively. The elec-
trons are driven forth and back by the external laser field.
In figure 4(a), the period of oscillations of electron pop-
ulation in the energy band corresponds to the half optical
cycle of the driving laser. However, in figure 4(b), the time-
dependent populations are different between the neighbor half
optical cycle in the periodic asymmetric potential showing the
asymmetry of the excitation. This agrees with our discussion
above.



J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 235601

T-J Shao et al

Log,,(population)

Log,,(population)
-9
-10
11
12
-13
14

-15

Figure 4. (a) The time-dependent population of the periodic symmetric potential. (b) The time-dependent population of the periodic

asymmetric potential.

3.2. Temporal profile of HHG in periodic asymmetric
potentials

Figures 5(a)—(d) show the temporal profile of solid HHG from
the asymmetric potential and symmetric potential, respec-
tively. The first and second plateaus predicted from the quasi-
classical trajectory agree well with the temporal profile of
HHG from the TDSE.

One can see the HHG dynamics predicted by the classical
model repeat in each half optical period, which is independent
of the laser polarization. This is because quasi-classical cal-
culation only requires the band energy while the real space
laser-dressed asymmetry of potential or complex transition
dipole moment (TDM) phase is ignored.

Figures 5(a) and (b) show the temporal profile of HHG
from the periodic asymmetric potentials driven by the laser
field with the opposite polarization direction. In figure 5(a),
in each optical period, there are one ‘strong’ (t = To/2 + NTj)
and one ‘weak’ harmonic emission (t = Ty + NTy). When the
driving laser field changes signs, in figure 5(b), the temporal
profile of harmonic emission shifts by half optical cycle, and
there is one ‘strong’ ( = Ty + NTj) and one ‘weak’ harmonic
emission (t = To/2 + NTj). This indicates the temporal sym-
metry breaking of HHG in periodic asymmetric potentials and
explains why even order harmonic is observed in figure 2.
For comparison, the temporal profile of HHG from the peri-
odic symmetric potentials driven by 24 o.c. trapezoidal laser
field with opposite polarization is plotted in figures 5(c) and
(d), respectively. One can observe the HHG dynamics have
a period of half optical cycle for both the first and second
plateaus.

3.3. k-space perspective

Figure 6(a) shows the amplitude and phase of the TDM
from periodic potentials which are solved by the Bloch-state
basis expansion method. For both symmetric and asymmetric
atomic chains, the corresponding bandgap is the smallest at the
I" point (k = 0) which is the eigenstate on top of the valence
band. The transition dipole amplitude reaches the peak at the I"
point as shown in figure 6(a). For a one-dimensional periodic
symmetric potential with inverse symmetry, the TDM is a real
quantity and an even function with respect to k [29, 30]. The

=MNNW =MW =NMNW

Harmonic order

=NINIW
QW=O~N GW=O~ IW=O~ W=~

Figure 5. (a) and (b) The temporal HHG profile of eigenstate on top
of VB1 in k-space driven by the 24-cycle trapezoidal laser pulse
from the periodic asymmetric potentials with parallel (a) and
anti-parallel (b) polarization direction of the driving field. (c) and (d)
The temporal HHG profile of eigenstate on top of VB1 in k-space
driven by the 24-cycle trapezoidal laser pulse from the periodic
symmetric potentials with parallel (c) and anti-parallel (d)
polarization direction of the driving field.

TDM phase is a constant with respect to k as shown by the blue
solid scatters.

For periodic asymmetric potential, the TDM is a complex
quantity. The k-dependent TDM phase plotted by blue-white
scatters in figure 6(a) reflects the asymmetry of system in real
space and is closely linked to the observed even harmonic
signal.

In k-space, the HHG spectra calculated by SBEs [9, 10]
are shown in figure 6(b). Here, the Gaussian laser duration
is 20 o.c., the wavelength is 3300 nm and the amplitude of
field strength Ej is 0.003 a.u. For the periodic asymmetric
potential, clear and sharp even order harmonics can be seen
in both HHG contributed by the interband (blue solid line)
and intraband (red solid line) transitions. The temporal profile
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Figure 6. (a) The black solid line and black dashed line show the
TDM of the periodic symmetric and asymmetric potentials,
respectively. The blue solid scatters and blue-white scatters show
the phase of the TDM from the periodic symmetric and asymmetric
potentials, respectively. (b) The interband (blue solid line) and
intraband contributions (red solid line) of the high-order harmonic
generation from the periodic asymmetric potentials solved by SBEs.
The black dashed line shows the total HHG spectra with the

same simulation parameters except for a constant phase of TDM
which is plotted for comparison. A zoom version of the

spectra shows the harmonics above the minimum bandgap.
Simulated laser parameters: the dephasing time is 7> = Ty/4,
full-width-at-half-maximum (FWHM) is 20 o.c., a field strength

Ey = 0.003 a.u., the 3300 nm driving laser has a temporal shape of
Gaussian function.

of HHG contributed by the interband and intraband transition
in figures 7(b) and (c) shows the minimum period of HHG
changes to one optical cycle when the TDM phase is a complex
quantity. The intrinsic temporal symmetry of the HHG process
is broken.

3.4. Dephasing-time effect

In solids, the dephasing time describes the coherence between
the electron in the conduction band and the hole in the valence
band. A short dephasing time will suppress the high-order
recombination trajectories between the electron and hole. As
shown in figure 7(a), harmonic emission is mainly contributed
by the short trajectory when 7, = Ty/4. Both odd and even
order harmonic signal is observed from spectra contributed by
interband and intraband transitions. As shown in the temporal

profile of interband transition in figure 7(b) due to the asym-
metry of excitation, in each optical cycle, there is one ‘strong’
harmonic emission and one ‘weak’ harmonic emission in the
following consecutive half cycle. Similarly to interband transi-
tion, in figure 7(c), the temporal profile of intraband transition
also shows only one strong HHG emission in each optical cycle
of the driving field.

Figures 7(d), (e) and (f) show harmonic emission by assum-
ing TDM with phase invariable with k, all the other param-
eters are identical with figures 7(a)—(c). Substantial contrast
is observed by assuming a constant TDM phase. One can
see from figure 7(a) that only odd harmonics are produced.
Both the temporal profile of interband HHG in figure 7(e)
and intraband HHG in figure 7(f) are generated twice in each
optical cycle of the driving field, therefore the even order har-
monics between neighbor consecutive half-cycle cancel each
other.

As shown in figures 7(g)—(i), by increasing the dephasing
time up to 207y, the intensity of the long trajectory of inter-
band transition becomes stronger and high-order recombina-
tion emerges. In figure 7(h), from r = T, to 27, the longer
dephasing time leads to a harmonic radiation emerge at t =
1.5T compared with figure 7(b). The HHG burst is no longer
once in each optical cycle. In the corresponding harmonic
spectrum, from 16wy to 28wy, the even-order harmonic signal
becomes less obvious. The interferences between high-order
recombination trajectories in interband transition lead to the
suppression of even order signals and are responsible for the
loss of clear harmonic structure.

Howeyver, in contrast to interband transition, one can find the
intraband transition is not very sensitive to the dephasing time.
When the dephasing time is increased up to 207y, clear even
order harmonics appear in the region in the spectra with energy
below the minimum band gap. This might be contributed to
the dephasing time describing the coherence between the con-
duction and valence band, therefore, is directly related to the
interband transition. While the intraband transition is mainly
related to the excitation process in the three-step model of
solid HHG. Thus HHG contributed by the intraband transition
is less influenced by the dephasing. The temporal profile of
intraband transition in figure 7(i) for 7, = 20 o.c. further
confirms this.

As a result, the dephasing time affects the interband and
the intraband HHG differently. For interband HHG, dephasing
competes with the asymmetry of interband HHG dynamics in
solid HHG from periodic asymmetric potentials. When the
driving electric field is strong, the dephasing time is short
due to the high speed of the electrons. Moreover, a larger
electric field will enlarge the asymmetry of excitation in the
time domain from periodic asymmetric potentials. It can be
expected that the symmetry-breaking effect will become more
significant when the amplitude of the driving laser is large. In
the second, intraband HHG dynamics are mainly determined
by the excitation process and less influenced by the dephasing.
Thus even order harmonics below the minimum band gap of
periodic asymmetric lattice should be clear and irrelevant to
the dephasing.
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Figure 7. Left column (a), (d) and (g): HHG spectra contributed by interband and intraband transition. Middle column (b), (e) and

(h): temporal profile of interband HHG. Right column (b), (d) and (f): temporal profile of intraband HHG. (a)—(c) 7> = To/4 with a
k-dependent phase of TDM from periodic asymmetric lattice; (d), (¢) and (f) same as the upper row by assuming a constant phase of TDM;
(g), (h) and (i) 7> = 207, with the k-dependent phase of TDM from the periodic asymmetric lattice. Simulated laser parameters: FWHM is
20 o.c., a field strength Ey = 0.003 a.u., the 3300 nm driving laser has a temporal shape of Gaussian function.

3.5. Carrier-envelope phase dependence

In the following, we study the CE phase dependence of solid
HHG in the periodic asymmetric potential by using few-cycle
laser pulses. Figure 8(a) shows the temporal waveform of the
3 o.c., 3300 nm, Ey = 0.003 a.u. laser pulses with CE phase
$cg = 0 and g = 7 rad. The two waveforms are identical,
except that the polarization direction of the laser is opposite.
For inverse symmetric systems, such as inert gas or fused
quartz, the driving field with CE phase ®cg =0 and &g =7
rad will produce the same HHG spectra.

However, in a periodic asymmetric potential, the excitation
differs between the consecutive half-optical cycles. For peri-
odic asymmetric potential, the laser-dressed lattice potential
is not inverse symmetric. The electron tends to locate in the
deeper well of the two-double well structure of the lattice.
Therefore, in the former half-cycle, the electric field is parallel
to the permanent dipole of the lattice, the electron energy is
reduced due to the downshifting action of the driving field.
As a result, the excitation probability and harmonic yield are
low. In the following consecutive half cycle, the laser field
changes sign, the electron energy raises by upshifting action
of the laser field, leading to a larger excitation probability and
higher harmonic yield.

As shown in figure 8(b), there are obvious differences
between the HHG spectra driven by the few-cycle laser field
of &cg = 0 (red solid line) and ®cg = 7 rad (blue dashed-
dotted line). In figure 8(c), the harmonic yield is plotted as a

function of CE phase from 0 to 37 rad. When the CE phase is
varied, the harmonic peaks shift, forming a period in 27 rad
of the CE phase rather than a period of 7 rad for a symmetric
system.

Figures 8(d) and (e) show the temporal profile of HHG
driven by three-cycle lasers with ®cg = 0 and ®cg = 7 rad,
respectively. The half-cycle HHG processes are marked with
‘1°, 2°, and ‘3’. When ®cg = 0, as shown in figure 8(d),
the harmonic bursts ‘1’ and ‘3’ are suppressed, while the
harmonic emission burst ‘2’ is enhanced. In contrast, in
figure 8(e), for &cg = 7 rad, harmonic pulse ‘2’ is sup-
pressed, while harmonic pulses ‘1’ and ‘3’ are enhanced. This
explains the difference between HHG spectra driven by a
few-cycle laser pulse with a 7 phase shift of CE phase in
figure 8(b).

In figure 8(d), the enhanced harmonic burst 2’ indicates an
isolated attosecond emission can be selected. In figure 8(f), a
synthesized 977-as isolated attosecond pulse (IAP) is shown
by superposing harmonics from 27th to 37th from HHG emis-
sion driven by few-cycle pulse with CE phase ®¢g = 0 without
any phase compensation (red solid line). However, when CE
phase &cp = 7 rad, 2 as bursts are synthesized rather than
the TAP (blue dashed-dotted line). This indicates excitation
and HHG dynamics in asymmetric lattice potential can be
exploited as a gating mechanism for the generation of IAP
by choosing a proper polarization direction of the driving
laser field.
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Figure 8. (a) Temporal profile of 3 o.c. gaussian driving laser pulse with CE phase ®cg = 0 (red solid line) and &g = 7 rad (blue
dashed-dotted line). (b) The HHG spectra for two different CEP values of ®cg = 0 and ®cg = 7 rad. (c) Calculated CEP dependence of
HHG from periodic asymmetric potential. (d) and (e) The temporal HHG profile for ®cg = 0 (d) and &g = 7 rad (e). (f) The temporal
profile of the synthesized IAP. The IAP is synthesized by inverse Fourier transforming the harmonics from the 27th to 37th order. Simulated
laser parameters: the dephasing time is given as 7> = T/4, FWHM is 3 o.c., a field strength £y = 0.003 a.u., the 3300 nm driving laser has a

temporal shape of Gaussian function.

4. Conclusion

The purpose of this paper is to study the solid HHG process in
periodic asymmetric potentials. Firstly, driven by a monochro-
matic multi-cycle 1600 nm laser pulse, even harmonics are
observed from the solid HHG spectra. Our real-space TDSE
simulation confirms the temporal symmetry breaking of the
excitation and HHG dynamics leading to the even order signal
observed from the HHG spectra.

In addition, by using the Bloch state expansion method, the
TDM of the periodic asymmetric potential is obtained. The
TDM in the asymmetric system is a complex quantity and
the k-dependent phase reflects the asymmetry of real space
structure. We also find that the dephasing effect competes
with the temporal symmetry breaking of interband contributed
HHG. By increasing the amplitude of the driving field, the
even-order harmonic signal is expected to be more obvious.
This is because the asymmetry of excitation will increase and
the high-order recombination trajectory will be suppressed by
a short dephasing time when the driving electric field is strong.
While the intraband HHG is less influenced by dephasing time.

Finally, we further extend the analysis to the CE phase
controlled HHG dynamics in periodic asymmetric potentials.
The minimum periodicity of HHG dependence on CE phase
is 27 rad in periodic asymmetric potentials rather than the 7
rad for HHG in the symmetric system. By employing a CE
phase-modulated driving field, the quantum path of the HHG

process from periodic asymmetric potentials can be effec-
tively selected and is promising to be utilized as an isolated
attosecond pulse gating mechanism.
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Appendix

The band dispersion curves in the reciprocal space are origi-
nally computed from Bloch-state basis expansion method and
fitted by the Fourier series,

Ecp(ke) =Y aly cos(jk.a,)
j=0

s)
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Table 1. Bands expansion coefficients of the periodic
asymmetric potential.

J Qavyp acp

a —11.33 —0.3018
o 0.7597 —2.749
an 0.03791 0.3903
a3 0.004122 —0.1572
oy 0.0007473 0.06797
s —5.104 x107° —0.03535
g 1.081 x10~* 0.02003
[e%! —7.202 x107° —0.01234
ag 5.995 x1073 0.008159
o™ —4.966 x107 —0.005751
g 4.261 x107° 0.004295

Table 2. The expansion coefficients of the TDM of the periodic
asymmetric potential.

j Qddreal [3 dreal adimag [3 dimag
j=0 0.414 0.0 —1.178 0.0
j=1 0.101 —0.1259 —1.062 —0.07458
j=2 —0.01557 0.07514 —0.03992 0.07865
j=3 0.02843 —0.05316 —0.1172 —0.06973

(atomic units)

TDM

o VBM o CBM ° Gy © g
Fitted Band structure Fitted TDM

A4 0 1
k (n/a,)

40 1
k (n/a,)

Figure 9. (a) Energy bands of the periodic asymmetric potential.
(b) The magnitude of real part d, and imaginary part dip,, of the
TDM between valence and conduction band considered in the SBE.
The black solid line shows the energy bands and TDM fitted by the
Fourier series.

Evp(k) =Y i cos(jkyay) (16)
j=0

where a, = 8.0 Bohr is the length of the lattice and k, is the

Bloch vector. We use jup ton = 10 to expand the energy band

dispersion curves. The coefficients can be found in table 1.

The TDM for the periodic asymmetric potential is,

d(kx) - dreal(kx) + idimag(kx) (17)

The real part and imaginary part of TDM are fitted by the
Fourier series, respectively,

drea(ke) = ey cos(jkeay) + Y By sin(keay) (18)

j=0 j=0
dimag (k) =Y ady cos(kear) + > Bl sin(kea,) (19)
j=0 Jj=0

The coefficients can be found in table 2. The laser polarization
is chosen to be along the direction of periodic asymmetric
potentials. The SBEs are solved by the finite difference method
with 300 k-space points (full Brillouin zone). The energy bands
and TDM are displayed in figures 9(a) and (b), respectively.
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